Cruise report

R/V Arni Fridriksson
 A 200413

6-17 September 2004

(Foto: F. Goncalves)
Akureyri-Reykjavík
C. Riedel

University of Hamburg

Cruise report

R.V. Arni Fridriksson

Cruise No. A2004 13
Cruise dates: 06/09/04-18/09/04
Subject of research: Earthquake studies and multibeam bathymetry in North Iceland

Institute: Institut für Geophysik
Universität Hamburg
Bundesstr. 55
20146 Hamburg
Germany

Chief Scientist: Dr. C. Riedel

Number of scientific crew members: 8
Project: „Tjörnes Fracture Zone Seismic Tomography Experiment" (TJOSTE 2004) - part of the NICExperiment, DFG-project Da 478/13-1, Ri 1220/2-1

Contents:

1. Crew, list and affiliation 3
2. Introduction 4
3. Research program 6
4. Cruise diary and technical report 8
5. Scientifc equipment 17
6. Preliminary results 18
7. Appendix 26
8. Acknowledgements 55
9. References 55

1. Crew, list and affiliation

Position
Chief Scientist

Scientists

Technicians

Scientific support onshore

Name

Carsten Riedel

Bryndís Brandsdóttir Martin Hensch Barbara Hofmann Marcus Thölen
Fernando Goncalves
Andrei Martinienko
Björn Sigurðsson
Sven Winter

Ragnar Stefanson Ari Tryggvason

Affiliation

Inst. für Geophysik Hamburg
Háskola Íslands Reykjavík
Inst. für Geophysik Hamburg
Inst. für Geophysik Hamburg
Inst. für Geophysik Hamburg
GeoPro
GeoPro
Hafrannsóknastofnun
Inst. für Geophysik Hamburg
Veðurstofa Íslands
Uppsala Universitet

Figure 1: The complete crew including the ship's crew in the port of Akureyri.

2. Introduction

Geophysics enjoys a long history at Hamburg and in early times people involved in earthquake research at the observatory became interested in North Iceland, the target area for this survey. Thoroddsen (1925) mentioned that in 1908, the Hamburg seismic station, a Wiechert instrument, registered an event of intensity 3 on the Mercalli scale near Akureyri (Fig. 1) shortly before 6 h on the $26^{\text {th }}$ of December. However, this is not visible on the stored carbon copies of 1908 at the observatory in Harburg.

This event, as we know today, probably occurred in a 120 km wide belt joining two segments of the mid ocean ridge system, Kolbeinsey Ridge in the north and the North Volcanic Zone of Iceland in the south. Frequent seismicity (Rögnvaldsson et al., 1998), recent ultramafic volcanism (Devey et al., pers. comm.) and gas venting (Botz et al., 1999) go along with this unique geodynamic situation, which was first described as a transform zone by Sykes et al. (1967) and is actually situated between the Iceland plume and an ultra-slow spreading ridge. It is nowadays known as the Tjörnes Fracture Zone (TFZ), see Fig. 2.

From time to time seismicity endangers the life conditions of man, their cattle and infrastructure in the TFZ. The last disastrous (local earthquake magnitude 6.4) event happened in 1934 around Dalvik (Thorarinsson, 1937) and was described by a Mercalli scale intensity of 10 - houses broke down and many men were injured between Hofsos on Skagafjördur and Akureyri, the secret capital of the icelandic north.

Although stress is usually transferred from ridge movement to the transform zone, most of the faulting near the surface occurs in north-west orientation (Riedel et al., 2000), thus, they represent so called Riedel faults of the shearing system. b-values indicate that fluid movement plays a vital role for the rupture of these faults (Riedel et al., 2003).

Both its unique geodynamic situation and hazard assessment make this area a prime target for seismic observations. The permanent icelandic SIL network has operated 13 3-component-stations with 20 s sensors from Lennartz in the icelandic north (Fig. 3). Their setup, however, suffers from a major disadvantage. Since most of the events in the TFZ occur offshore and their seismic stations are mainly operating on the icelandic mainland, an expansion towards the offshore part using ocean bottom seismometers (OBS) appears to be logical.

During the last cruise of R/V Dröfn in June/July 2004 a set of 14 ocean bottom seismometers/hydrophones was deployed within the area of frequent seismicity. During the cruise that is described here, number 13 in 2004, but still a lucky one, these 14 ocean bottom seismometers were recovered plus a temporary land station which was installed on Lágey, an island just north of Tjörnes peninsula.

The active structure of the TFZ is mirrored in the morphology of the seafloor, i.e. bathymetry. So a detailed study of the TFZ and adjacent areas was performed to get a better grip on environmental parameters for a thorough revision of the geodynamic situation of the transform region.

Figure 2: The topography/bathymetry (in grey contours) of the Tjörnes Fracture Zone as it was known before the beginning of multibeam bathymetry is shown on the map. Geographic names of interest and the three most important towns, Akureyri, Husavik and Dalvik have been marked. The hydrothermal field at the islands Kolbeinsey (KHF) and Grimsey (GHF) are also marked. Seismicity is focussed along 2 seismic lineaments offshore, the Grimsey Lineament (GL) and the Husavik-Flatey fault (HFF), and a virtual lineament through the town of Dalvik and Dalsmynni valley, often termed the Dalvik lineament.

3. Research program

In a common approach with the meteorological office in Iceland, the University of Hamburg installed a temporary seismic network offshore North Iceland and tested both the temporary setup and the permanent SIL setup of the meteorological office by dynamite explosions during the cruise of R/V Dröfn. At the same time the land network was expanded by further stations from the University of Uppsala (Sweden). This combined approach is called NICE (North ICeland Experiment). Between end of June 2004 and mid September 2004 the NICE experiment registered local earthquakes on 38 -component stations (see Fig.3). While writing this report data exchange has already occurred.

Figure 3: The station setup for the whole NICE experiment, this cruise report only deals with the deployment of the OB stations of Hamburg and station U11 that was already recovered during this cruise (attention: new OB numbers assigned !).

The recovery of 14 ocean bottom (OB) stations and 1 land station (U11 on Fig.3) will be documented on the following pages as well as any technical requirement stemming from observations during the recovery phase on the Arni Fridriksson and in the cooperation with the land crew.

4 of the OB stations are ocean bottom hydrophones from the University of Hamburg (OB30-OB33) and 10 of the OB stations are ocean bottom seismometer/hydrophone combinations from the company GeoPro (OB34-OB43). The land station was actually an island station and positioned on Lágey (U11). An EarthData logger and a Lennartz 20 s seismometer operated there.

More than 2300 nautical miles of multibeam bathymetry lines were recorded and these were complemented by 12 conductivity-temperature-depth (CTD) logs to be able to determine the local sound velocity-depth profile. The data need to be adjusted accordingly.

On top, within a volcano crater which is located southeast of Kolbeinsey island and covered by the presented multibeam survey, dredging was performed. However, in contrast to the fresh looking edifice morphology no fresh lavas were discovered.

Note: For this cruise report other numbers for the OB stations were assigned than during the Dröfn cruise. The numbers here are those which need to be addressed when accessing data!

4. Cruise diary and technical report

The following cruise diary is split into 4 parts, which will be headlined in the following:
I) the recovery operation for the OBHs of the University of Hamburg,
II) the recovery operation for the OBSs of the company GeoPro,
III)a multibeam bathymetry survey coupled to dredging,
IV)and finally a rescue operation for an island station of the University of Uppsala.

05/09/04 Arrival of the scientific crew from the University of Hamburg and GeoPro in Akureyri after flying from Reykjavik with Air Iceland. This was a much more relaxed intro than last time and it is not much more expensive if flights are booked early enough. Accomodation in „Guesthouse Akureyri" for one night (check-in: 22:30 h), which is far more professional and, unfortunately, less exciting than Dalvik. Andrei and Sven who took a flight via Amsterdam lost their baggage but Icelandair promises to deliver the baggage to Akureyri in time.

06/09/04 Preparation

After a call in the morning Ragnar Stefansson arrives at $9: 30 \mathrm{~h}$ to deliver the boxes we stored in Dalvik. The rest of our equipment is easily spotted in a container at the local EIMSKIP store. They tell us that the research vessel will not arrive at 08:00 h as scheduled but at 13:00 h to $13: 15 \mathrm{~h}$ only.

At around 13:00 h the lost baggage is brought to EIMSKIP by a courier from Icelandair. This was particularly important because the Benthos releaser board unit for the GeoPro stations was part of the set.

Finally, R/V „Arni Fridriksson" arrives at 14:10 h. Bryndis is already onboard and welcomes us before heading towards the center of town for a quick communication. The captain welcomes us, as well, and the first officer requires a list of all people of our crew. This is something which could have been easily arranged before stepping on the ship, but we forgot it anyhow. This list must all contain all the passport numbers and should be prepared for further cruises.

Cruise (Part I)

After embarking and checking into the cabins and discussing the strategy for the following days with Bryndis and the Captain, the ship leaves towards the position of OB33 at 15:30 h. The multibeam sounder is turned on directly after starting the ship so that we can investigate the bottom morphology by one swath including the Brimsnes area which we investigated during the Dröfn cruise in July.

Since it takes too much time to reach the position of OB33 in daylight, the plan is to arrive on position at around $8: 00 \mathrm{~h}$ in the morning of the next day. Carsten tries to instruct the crew on how we want to recover the single OBSes, i.e. the University OBHs by a long stick and the GeoPro OBSes by a small boat. As it turns out the crew is really happy about using the boat in contrast to what we thought. It is also valuable to know that the crew would like photos from the instruments so that they know what
instruments they actually have to recover so that they are easier to spot. Information on size and color is also important.

Cruise Part (III)

Multibeam survey began at 18:30 h. Two lines were surveyed across the geothermal field offshore Brimnes. The vessel stopped for a first CTD attempt north of Olafsfjörður. Unfortunately, the computer screen malfunctioned and had to be exchanged, so the attempt was prevented.
Finally, a CTD (No. 298) was performed at 21:39 h in southernmost Skjálfandadjúp. A new survey (A200413_E1) was started at 19:03 when we surveyed a N-S line east of the Skjálfandadjúp 2002 map (Brandsdottir et al., 2002) on the way to $67^{\circ} \mathrm{N}$ latitude. For positions of CTDs look at tables in the appendix.

07/09/2004 Cruise (Part I continued)

We enjoy excellent weather throughout the day.
After a nice breakfast prepared by a funny and friendly cook (including cod liver oil) we are preparing the Mors releaser board unit, GPS antenna and a laptop computer (SONY VAIO PCG F 801 running under Windows 98) for skewing the flash disks in the GEOLON logger. The 4 pin cable connected by 9 pin serial interfaces, described in figure 4 is used for connection between computer and data logger. A GPS cable is used between antenna and data logger. The action will record the position and time of recovery and flush all data to disk.

PC

2.3 data cable 4,5 handshaking

GEOLON

Figure 4: Link from PC to Geolon.
The task plan for the scientific crew is the following:

- Carsten will skew and read out GEOLONs, communicate with boatman and captain and coordinate actions,
- Marcus and Sven help during recovery at the ship's side,
- Martin is responsible for the releaser board unit,
- and Barbara helps on the bridge to record coordinates and spot the OBHs.

Further more, Marcus cleans the instruments with clear water to get rid of the salt and Martin, Marcus, Sven and Barbara dismount the parts from the frame. During dismount somebody removed the preamplifiers from the pressure cylinders. This
should not happen in the future, because that makes it hard to decide which preamplifier belonged where. The serial number of the preamplifiers should be noted on the OBH Station form. As the last action, the empty batteries of releaser, pressure cylinder, flash beacon and radio transmitter, are all thrown into a trash bag by Sven, Martin and Marcus. The battery packs cannot be emptied before because the GEOLON must be kept linked to the battery pack until the disks are skewed. So please remove carefully from pressure cylinders in upcoming surveys !

At 8:25 h, i.e. 10 minutes before the scheduled arrival on position, the captain slows down the ship and stops the engine after moving it into the position of the main current, following Marcus' suggestion.
Martin sends the release command via the board unit and the releaser returns a relase signal immediately, because water depth is less than 500 m .5 minutes later the captain spots the OBH in front of the ship quite far away. So we decide to stop on position next time rather than 10 minutes ahead.

At 8:40 h, we arrive next to the OBH, which is moving on the waves. Our construction, a 5 m long stick with a closing hook at the end (see Fig. a) is not working very well, so instead the boatman tapes a hook triangle (see Fig. b) to the 5 m long stick and this works much better.

Figure 5: Instead of the (a) flexible hook in the top image we used (b) a triangular staff with 3 hooks as that in the bottom image.

Wave action and salt water corrosion left no particular traces on the OBH components and the flash disks are easily skewed, because there is a good GPS signal. 1.5 GByte have been recorded on the instrument during recording and a deviation of 15 ms occurred. Further parameters on all recovery operations are listed in tables in the appendix.

At 9:57 h, we arrrive on position OB32, the ship is moved into direction of the preferential currents and the engine turned off. Its releaser reacts to our board unit
signal directly. With the radio receiver of the ship we detect the direction of the OBH, once it turns up subaerially at 10:00 h. However, only after we informed the captain that R/V Bjarni Saemundsson has a receiver to detect our frequencies he is open to believe that R/V Arni Fridriksson possesses the a radio receiver for the right frequency range, as well. Our own mobile radio receiver is not capable of receiving a strong radio signal at all.

At 10:19 h, the OBH is hauled onboard. Only now we realize that everything we marked on the frames, papers etc. is still readable, i.e. the printed adresses on A4 paper covered by plastic foil, which were already torn apart during deployment, and the numbers on the tape that we wrote using an Edding pen. However, at the bottom of the pressure cylinder, corrosion is visible. So destruction of metals seems to go on much faster than the destruction of ink in seawater. Marcus believes this to be an effect of electrolysis, but internally no damage is visible.
Flash disks can be skewed with a time deviation of 20 ms , and about 1.5 GByte were registered here, too.

At 11:57 h, after lunch, the $3^{\text {rd }}$ OBH (OB31) is released, however it does not react to Mode B commands as recorded on the station form, but to Mode A instead. When the instrument is hauled up, the antenna of the radio transmitter is destroyed by the crane. As the other pressure cylinders before, „Heimaey" is opened and a black layer of gum occurs between the pressure cylinder and its cap, a sign of corrosion or heating ?
The flash disks contain about 1.5 GByte of data and are skewed with a deviation of 303 ms .

At 13:03 h, we are on position for our last OBH, OB30. OB30 is released after switching to Mode B on the releaser board unit, again contrary to what we noted on the station forms. What is going on ??

At 13:10 h , the radio receiver notes a signal from OB30 and Barbara and the captain spot it easily. During the transport phase towards the instrument Carsten checks if all flash beacons and radio transmitters were turned off and emptied, which is the case. At 13:20 h , the instrument is hauled onboard. The cap of the pressure cylinder is damaged at the edges.
The flash disks contain only 300 MByte and are skewed. This is a first information that something is different from the rest and, probably, that means problems must have occurred during recording time. The deviation of -99 ms is apparently normal as I am told by people more experienced in that business. An idea occurs that hot water may have been in the area, because that would accelerate the internal clock.

At 13:38 h, flash beacons and radio transmitters are packed into their according boxes after being emptied from batteries. Sven turns the switches all on, because this reduces tension on the switches in that case.

A first summary:

Two of the university instruments are slightly damaged (i.e. Odense and Göteborg) on the outer surface and should be restored, one is dirty from sealing gum between cap and cylinder (Heimaey) and should be cleaned. Maybe the high temperatures that we expect in the surroundings (hydrothermal field) had an influence on the seal. However, there was no damage on the outer cap. One hydrophone did not record as much data as the rest, which indicates a lower dynamic range during recording, so probably these data are flawed.
It was much easier to spot the OBHs when the radio receiver of the ship could detect the signal of the radio transmitter. The mobile receiver does not work well and without a receiver aboard it is hard to find a small instruments in the waves of the ocean even when the sea is quiet.
The data for one hydrophone in only two months time are so large that it is of no use to bring a CD writer in order to save the data insitu. A laptop with a DVD writer would be helpful for such tasks.

Cruise (Part II)

After all University OBH have been assembled, GeoPro is taking over to recover their OBSes.

At 15:15 h, the first GeoPro OBS (OB34) is recovered by boat. Two crew men in a small zodiac are deployed onto the sea surface and move towards the OBS when it is less than some hundred meters away (Fig. 6). One of them keeps it in his arms and the other one steers the boat back to the ship's side. First the OBS is lifted on board by crane, then the boat with the two men.

Figure 6: Two crew men move a small boat towards the OBS and draw it back to the ship.

There seem to be minor problems with the Benthos transponder during the release part. Somebody has to check the computer screen the whole time during the rise of the instrument. This is work intensive and not comparable in quality to the Mors releasers.

At 16:50 h, OB35 is lifted into the ship and the boatman needs to make space for
more OBSes on the cargo deck and thus moves the frames of the university OBSes. After consultation with the $1^{\text {st }}$ officer, it is decided that 2 more OBSes (OB36, OB37) will be recovered during the day. This task ends at 19:35.

Cruise (Part III - continued)

Using the multibeam instrument we surveyed a line along northeastern margin of the 2002 map and between OB 32 and OB 33 during the night. Between all the OB positions swaths were surveyed, i.e. west along $67^{\circ} \mathrm{N}$, south along $19^{\circ} \mathrm{W}$ and east along $66.75^{\circ} \mathrm{N}$. After retrieving OB37, we surveyed north to OB33 and west to Stóragrunn, a submarine volcano southwest of Kolbeinsey island, before returning south along the eastern margin of the map and to OB40 the next morning. A CTD instrument (No. 300) was deployed at 23:14 h.

08/09/04 Excellent weather throughout the day.

Cruise (Part II -continued)

The early bird catches the worm, so at $8: 45 \mathrm{~h}$, the next OBS (OB 40) is already on board.
Up until 18:08 h, all remaining OBSes of GeoPro (OB38, OB39, OB41, OB42, OB43) are caught without problem. Including transfer between the station it nevers takes longer than 1 h 45 min . So, we really enjoy a stroke of luck and have retrieved all submarine stations during the day.

Cruise (Part III - continued)

The multibeam task for the day was a survey along the northeastern margin of the 2002 map (Brandsdottir et al., 2002), between Stóragrunn and OB 32 and 33. After retrieving the OBSes of GeoPro we transited north along western margin of 2002 map.
Two CTD records were acquired during deployment at CTD300 $\left(66^{\circ} 30 \mathrm{~N}, 19^{\circ} \mathrm{W}\right)$ at 17:42 and CTD301 ($66^{\circ} 54 \mathrm{~N}, 19^{\circ} 15 \mathrm{~W}$) at 20:54 h. During the night, the west of Kolbeinsey Ridge is surveyed and we reach $19^{\circ} \mathrm{W}$ around midnight.

09/09/04 Cruise (part II -continued)

Only now the GeoPro stations are opened so that a time drift is determined. It turns out that two of the OBSes will probably not deliver data (OB35, OB37), one because 1.5 l water penetrated the sphere and the other, because the hard disk was mechanically destroyed by pressure.

Cruise (part III - continued)

During good weather conditions the survey of the southern part of Kolbeinsey Ridge is continued. A further CTD302 for sound speed control is deployed at $67^{\circ} 30 \mathrm{~N}$ and $19^{\circ} \mathrm{W}$ around $02: 07 \mathrm{~h}$ and CTD303 at $67^{\circ} 30 \mathrm{~N}$ and $18^{\circ} 42 \mathrm{~W}$ at $22: 59 \mathrm{~h}$.

Cruise (Part IV)

During the day we get the „go ahead" from A. Tryggvason to recover the land station from Lágey

10/09/04 Cruise (part III - continued)

The weather gets a little rougher during the day. Carsten decides to try Skopoderm transdermal plasts to get rid of the upcoming sea sickness and they work like wonder. The experience of many people seems to be that one should not use them longer than 3-5 days, because they change the visual perception of a person, but during this

Figure 7: Dredging aboard Arnif Fridriksson. campaign they work really well and do not show any side effects.

During the day the survey of southernmost KR is completed and the focus is switched to Stóragrunn volcano. Because the top of the submarine volcano is so shallow it takes a long time to acquire the data of the expected crater. However, it turns out that the crater is not really a crater, but rather a dome.

A further CTD measurement (CTD304) is acquired at $67^{\circ} 02 \mathrm{~N}$ and $18^{\circ} 24 \mathrm{~W}$ starting 21:20. h

At 21:47 h, the „so-called" crater of Stóragrunn is dredged only to obtain gravel, iceberg rafted material and a lot of stinking green organic stuff (Fig.7). Most of the rocks are not bigger than hand-size, well rounded and clearly of volcanic origin. A further dredge along the "lavas" on the eastern flanks of Stóragrunn, at $22: 16 \mathrm{~h}$, tears the sampling net of the dredging instrument. Any samples that might have been collected were thus lost. So, unfortunately, no new and fresh lavas were recovered.

11/09/04 Cruise (part IV - continued)

The day starts at 08:05 h with a transit to an adventure not seen before on this cruise. The plan is to return a seismic land station from Lágey (Fig. 8).

Figure 8: Lagey, one of the Manareyjar islands, home to station U12.
If possible, the EarthData logger shall be flushed, but we do not have a key for the
seismic station, so if not possible the station is to be taken against all odds. Carsten decides by throwing a coin, who is going to follow Martin on the island. The toss of the coin is won by Marcus.

Figure 9: The crew for the land station „rescue" operation in their zodiac boat after retrieving the station.

So when the research ship stops near the island at 11:43 h, the adventurers prepare for the „rescue" operation, because Ari did not succeed on the days before. Bad weather prevented ships of any size from reaching the island.

Marcus and Martin are joined by two men of the crew of Arni Fridriksson and are put aboard the zodiac about 1 mile from the island (Fig. 9). Propelled by its engine they move towards the island and find the small rope ladder leading to its plateau, where bird nests prevail surrounding a small hut. Marcus and Martin sign in the guestbook of the hut and get the transport equipment which is deposited there. They move towards the station and carry the batteries, seismometer, Earth Data logger and solar panels back to the rope ladder, before putting it on the zodiac and returning to the Arni Fridriksson. The whole operation takes 1 h 29 minutes. The captain presses on the horn of the ship in between to remind people to come back as fast as possible. Bad weather conditions have been predicted.
Unfortunately, the EarthData logger was locked and Martin and Marcus are incapable of flushing the disks. (As Ari reports later, this costed us about 3 weeks of data, but it still was the better choice, since it might have costed us the whole station otherwise.)

Cruise (part III - continued)

CTD307 at $66^{\circ} 16^{\prime} \mathrm{N} 16^{\circ} 52^{\prime} \mathrm{W}$ at $14: 07 \mathrm{~h}$ followed by surveying along the eastern margin of Tjörnesgrunn. Weather conditions worsened during the day. Aborted this Axarfjörður survey at midnight (sea conditions wind from NE at Beaufort scale 8) and started transit survey (A200413_T4) to Eyjafjörður.
12/09/04 Cruise (part III - continued)

In transit to Eyjafjörður we began surveying lines along Látraströnd around 4 a.m. We surveyed most of the region between Látur, Grenivík and Hrísey before heading towards Akureyri at 14:33 h and docked at 16:04 h. Carsten, Marcus and Sven left the ship at Akureyri, the container was nearly packed at that point with only a couple of things from GeoPro left to put in it.
B.Brandsdottir takes over responsibility for cruise leadership during the next part of the cruise. M. Hensch is installed as vice leader.
The vessel leaves again at $19: 58 \mathrm{~h}$ and we survey the Strýtur geothermal field ($65^{\circ} 50^{\prime}$ $\mathrm{N}, 18^{\circ} 06^{\prime} \mathrm{W}$) until 21:00 h. Two CTD deployments were carried out, CTD308 at $65^{\circ} 49^{\prime} \mathrm{N}$ and $18^{\circ} 08^{\prime} \mathrm{W}$, and CTD309 at $65^{\circ} 54^{\prime} \mathrm{N}$ and $18^{\circ} 17^{\prime} \mathrm{W}$. Finally, we surveyed another line along Brimnes and north along the tracks west of Hrísey, followed by a few lines in the mouth of Eyjafjörður before heading east back to Axarfjörður.

13/09/04 Cruise (part III - continued)

At 1:12 h we carried out the last CTD measurement before surveying in Axarfjörður began at 06:46 h. At 21:35 h, we headed north along the Álkantur eystri to finish mapping east of Kolbeinsey Ridge.

14/09/04 Cruise (part III - continued)

A multibeam survey along western margin of Skjálfandadjúp straight up north to Kolbeinsey Ridge was finished by 11:20 h. In the following, another dredge attempt was made on the eastern flank of Stóragrunn. The dredging equipment was lost during this attempt - it was torn off the wire holding it- but got a small sample in the loop holding the wire. The crew said we did not have the proper dredge equipment and that we need something called "Gassi". The day concluded with two extra lines at Álkantur eystri, before we transited to station OB 43, headed north and over towards station OB40 and, finally, resuming the Axarfjörður survey at 22:30 h.

15/09/04 Cruise (part III - continued)

Bathymetric surveying in Axarfjörður lasted until 15:18 h, before another last survey area is opened up. The region northwest of Tjörnesgrunn near Grimsey Hydrothermal field, was explored.

16/09/04 Cruise (part III - continued)

The region northwest of Tjörnesgrunn was finished during the day and we began transit along survey lines towards Reykjavík. The weather was fairly good to begin with but wind picked up during the morning and strong winds and high waves occurred along the northwestern peninsula of Iceland.

17/09/04 The ship docked in Reykjavik at 11:00 h.

5. Scientific equipment

Technical details of the scientific equipment are described in other reports. It is important to note the instruments we deployed. On locations OB30 to OB33 we used the Hamburg-type ocean bottom hydrophones (OBH on Fig. 13) with Geolon dataloggers, the exact specifications of the deployed instruments is noted in the Appendix. These stations use Mors OCEANO acoustic releasers.

Figure 10: The Hamburg type OBH with two glass spheres covered by orange plastic, which are mounted on a GFK frame. The datalogger is stored in the red pressure cylinder made of aluminium. The silver aluminium housing covers the hydrophone.

On locations OB34 to OB42 we used GeoPro double sphere seismometers with a hydrophone, Sedis III dataloggersand Benthos acoustic releasers. Further informaton on these stations are given in detail by the company GeoPro.

Figure 11: The GeoPro type OBS with two glass spheres, one for the releaser unit and the other for the seismometer unit.
The multibeam bathymetry survey was carried out with a high-resolution, 30 kHz

Simrad EM300 multibeam echo sounder, installed on R/V Arni Fridriksson. The EM300 transmits 135, two degree beams over an arc of 150 degrees. The angular coverage sector and beam pointing angles vary automatically with depth, maximizing the number of usable beams. Real-time positioning and vessel motion (roll pitch and yaw) were tracked using the Seapath 200/Seatex software which utilizes differential GPS. The EM300 system has a depth span of 5-5000 m , with a maximum swath width around 120 m at 100 m depth increasing to approximately 1200 m at 1000 m depth. CTD (conductivity, temperature, depth), measurements were carried out using Seabird SBE 911 plus sensors. The swath of sea floor covered on each survey line was typically three to five times the water depth.

6. Preliminary results

6.1. Seismic data

First of all, as stated in the diary, all seismometers were successfully deployed and no problems occurred during the deployment phase. A small problem, concerning the coupling and recovery of the Geopro stations, was mentioned. However, a first glimpse on the data cannot confirm this idea. The design of the Hamburg OBHs shows some minor points which can be improved. These improvement have been noted in the technical report.

The preliminary scientific results section deals primarily with data quality. The data of the NICE seismic experiment originate from 4 different sources, the two types of OB stations listed in this report, the Uppsala EarthData loggers and the permanent SIL network. During the time span of this cruise not all stations delivered data. So, we list those that did not record data:

Recording problems and quality

OB 30 of the University of Hamburg did not record anything but 3 of the explosions in July 2004, because one day after the station was deployed on the $29^{\text {th }}$ of June 2004, the signal amplitude suddenly increases to reach the maximum of the recording range at the day break to the $1^{\text {st }}$ of July. The reason is unclear at this point in time. But, a basic consequence is that only one day of data has been recorded near Kolbeinsey. The daily recording of the $30^{\text {th }}$ of June 2004 is displayed in Fig. 12.

OB 35 and OB 37 did not record anything because their hard disks were destroyed due to water penetration or respectively excess pressure.

U01 was only installed for a couple of days, before it was used as a mobile recorder for the explosions aboard R/V Drofn and last but not least relocated to U12 (see also report of land campaign).

U12, the island station on Lagey, did only record data unto the $18^{\text {th }}$ of August 2004, because the disk was not flushed during recovery (see technical report).

Figure 12: Daily plot for 30/06/04 on hydrophone recorder of station OB30, vertical scale ranges from -50000 to 300000 counts for all lines. Every hour is displayed as single plot starting with $0: 00 \mathrm{~h}$ at the top left and finishing off with $24 \mathrm{~h}: 00$ at the bootom right.

Creating a database

The data from all stations has been converted to GSE cm 6 (6 bit compressed format) using various programs: the University OBHs were converted using mlsconv, the GeoPro OBSes were converted using GeoPro software and codeco3 (Kradolfer et al.,), the SIL data were converted using bctool from the Meteorological Office and subroutines of codeco3 for checksum calculation of GSE and, finally, the data from the EarthData logger were converted using ham (Del Prete, 2003) conversion to sac binary and codeco3 afterwards (see Fig. 13).

So far, all the data are available in GSE cm 6 format on DVD, while on disk they are stored in SEISAN (Havskov et al.,) format, but this will addressed in the near future and changed to GSE. Wavetool from SEISAN was used to convert the data to SEISAN format.

Figure 13: Conversion routines used for building a database structure.

Data characteristics

Since we think it is unnecessary to present all the seismic data and their variety in a cruise report, we restrict ourselves to typical displays of the ocean bottom recordings here in order to document basic features. We will display the results of 1 explosion (05/07/2004 on Fig.14), the largest passive event recorded (12/08/2004 on Fig.15) during our deployment and a local magnitude 1 event (13/07/2004 on Fig.16).

Whereas the explosion is not easily visible on all recordings, the largest magnitude event and its onset can be recognized throughout the region. A typical feature, however, is the large amplitude occurring about 10 s after the event on the ocean bottom recordings. In a water depth of around 500 m , this is not the water multiple, it could, howeve, be a T -wave which travelled through the water between coast and receiver (with up to 50 km this should appear at up to 17 seconds after the original onset) or a surface wave.
Commonly, an S-Phase cannot be distinguished in the recordings of events and explosions.

The broad band hydrophones register oscillations between 3 s and 10 s period, which are also visible on the island stations from the icelandic network. However, commonly local events with magnitude between 4 and 12 Hz can be easily visualized by filtering or even only zooming into the record.

The event of magnitude 1 can be detected on the ocean bottom seismometers, but not easily on the hydrophones, but the largest event causes the seismometer to reach the upper and lower range limits, so, unfortunately, the signals on some stations are cut off on some seismometers.
200475105960.0 L

Figure 14: An explosion recording.
2004812205960.0 L

Figure 15: Recording of the largest event occurring during deployment phase.
2004713145360.0 L

Figure 16: Recording of local magnitude 1 event.

Further analysis ???

6.2.Multibeam data and dredging

The multibeam bathymetry data acquired during this cruise is displayed on Fig. 16. In fornt of all, the region north of $67^{\circ} \mathrm{N}$ was recorded during this cruise, but also the investigation in Axarfjördur (i.e. east of $17^{\circ} 30^{\prime} \mathrm{W}$) was mainly driven by our investigations.

Figure 16: Bathymetry of the survey area which was recorded during this and earlier surveys.

During earlier cruises, the flanks of the submarine volcano Storagrunn (Fig. 16) were analysed and a crater was proposed for the summit. However, investigations during this curise show a ragged top, which indicates a dome at the top. In this regard, Storagrunn is similar to Kolbeinsey islet, a ragged top which is subaerial and towers above a circular structure with similar flanks as Storagrunn.
Dredging of Storagrunn did not proviode unequivocal evidence for recent volcanism, gravel and mud dominated the summit.
... analysis of Bryndis ???
A further interesting structural investigation comprises the southernmost part of Kolbeinsey Ridge (Fig. 17). Single circular tops dot an elongated submarine mountain chain without a central rift valley. South of Kolbeinsey islet this is joined with the graben of Eyjafjördur.
The distribution of bathymetric highs is far more chaotic north of Kolbeinsey in contrast to Eyfjordur trough, where they are roughly aligned in $\mathrm{N}-\mathrm{S}$ direction.

An elongated mound structure trends from Storagrunn to Kolbeinsey Ridge ans has not been highlighted in earlier 1D surveys. Here we clearly see an enhancement of our image

Figure 17: A 3D view on the bathymetry of Kolbeinsey Ridge (view from south towards Kolbeinsey Islet northwards). of the plume-ridge transition in contrast to earlier surveys. Since this ridge is very likely connected to a magmatic system as e.g. a fissure swarm, this must be related to the overall history of the TFZ.

7. Appendix

In this appendix we list the ocean bottom station protocols and charts and coordinates of stations and shots.

Shot recording times on mobile hydrophone (Picks in SAC)

Shot number	File starting at	Seconds after
1	$11: 00,05 / 07 / 2004$	342.18
2	$12: 30$	1634.30
3	$16: 30$	385.88
4	$17: 00$	1153.36
5	$17: 30$	1037.22
6	$18: 00$	1337.40
7	$18: 30$	1497.76
8	$19: 00$	1761.31
9	$20: 00$	481.30
10	$21: 00$	481.14
11	$21: 30$	840.84
12	$22: 30$	660.92
13	$08: 30,06 / 07 / 2004$	361.13
14	$09: 30$	1440.71
15	$11: 30$	930.78
16	$13: 00$	1090.79

Ocean Bottom instrument positions (corrected version)

Name	North	West	Depth from echo sounder
OB30	$67^{\circ} 00.09$	$19^{\circ} 00.01$	521 m
OB31	$67^{\circ} 01.984$	$18^{\circ} 40.175$	264 m
OB32	$66^{\circ} 59.976$	$17^{\circ} 59.896$	447 m
OB33	$67^{\circ} 00.12$	$17^{\circ} 29.48$	279 m
OB34	$66^{\circ} 44.948$	$19^{\circ} 00.015$	345 m
OB35	$66^{\circ} 45.062$	$18^{\circ} 30.055$	296 m
OB36	$66^{\circ} 45.113$	$18^{\circ} 09.973$	427 m
OB37	$66^{\circ} 45.085$	$17^{\circ} 23.955$	279 m
OB38	$66^{\circ} 29.948$	$18^{\circ} 59.957$	380 m
OB39	$66^{\circ} 30.055$	$18^{\circ} 30.212$	193 m
OB40	$66^{\circ} 35.977$	$17^{\circ} 40.11$	395 m
OB41	$66^{\circ} 29.822$	$17^{\circ} 00.127$	238 m
OB42	$66^{\circ} 17.92$	$18^{\circ} 14.843$	120 m
OB43	$66^{\circ} 17.99$	$17^{\circ} 15.017$	155 m

Table A1: Positions of the OBHs (OB30-OB33) and OBSes (OB34-OB43).

Figure A1: Map of ocean bottom instrument positions. The yellow triangles mark the stations.

Shot onset times on recording stations
Shot 1

Shot 2

Shot 3

Shot 4

Shot 5

Shot 6

Shot 7

Shot 8

Shot 9

Shot 10

Shot 11

Shot 12

Shot 13

Shot 14

Shot 15

Shot 16

Date	Multibeam tracks logbook							Remarks
	Point number	Time	Ship's velocity in nm/h	Angular coverage left/right	Average depth in m	Sound speed in water next to ship	Location in ${ }^{\circ} \min \mathbf{N}$ $\min \mathbf{W}$	
06/09/04	1	19:03:00		63/63	140	1491.5	66101827	
	2	20:01:00					66131827	
	3	21:01:00					66101827	r12/brl3
	3	21:39:00		63/63	223	1490.2	66131741	$\begin{aligned} & \text { Station: } \\ & 1 \text { CTD298 } \\ & \hline \end{aligned}$
	4	22:18:00			221	1490.1	66131743	
	5	23:19:00	7.5	63/63	234	1489.5	66161735	$401,5 \mathrm{~nm}$ at midnight
07/09/04	6	00:19:00	8		223	1490.5	66221729 b	brl2/brl4
	7	01:19:00	7.5		223	1487.8	66301729	
	8	02:19:00	8		300	1487.8	66371735	
	9	03:19:00					66441744	brl2/hægv.
	10	04:19:00	8	63/63	378	1484.3	66521753	
	11	05:19:00	8.6		447	1484.2	66591801	
	12	06:19:00	7.4	63/63	420	1484.1	66551757	bri2/SSA3
	13	07:19:00	8.6		402	1484.4	67001749	
	13	08:02:00	6.8	63/63	283	1484.6	$\begin{gathered} 670017 \\ 33,5 \\ \hline \end{gathered}$	stopped log at 08:02
	14	08:45:00	4.7		271	1484.5	67001729	start log after retrieval of OB33, SA2/S3
	15	09:45:00	11.3	63/63	438	1485	67001756	
	16	09:51:00			447		67001759	stopped log just north of OB32
	17	10:23:00	11.2			1484.5	67001801	start log, depth had to be adjusted
	17	11:24:00	10.9		88		67011829	line statistics file not found
	17	11:46:00	3.5		299		67021839	$\begin{aligned} & \text { logging off, } \\ & \text { SA2/SA5 } \end{aligned}$
	1	12:29:00	11.8	63/63	360	1484.9	671,51846	new transit survey from OB31
	1	13:00:00	11.8	63/63	494	1485.6	67001859	stop line at OB30
	2	13:13:00	11.8	63/63	504	1485.6	67001900	start log
	3	14:13:00	11.8	63/63	455	1482.7	66501900	new line

	3	14:48:00	0	63/63	343	1483.1	66451900	stop line at OB 36
	4	15:18:00	0	63/63	354	"	66451900	start log, skoða hljóðhraða, S2/SA3
	5	16:18:00	6.3	63/63	300	1485.4	66451831	new line
	5	16:22:00	6.3	63/63		1485.6	66451830	stop line at stöð OB38
	6	16:46:00	6.3	63/63	286	1485.7	66451829	start log
	6	17:26:00	6.3	63/63	410	1486.1	66451811	stop line at stöð OB39
	7	17:49:00	6.3	63/63	413	1486	66451810	$\begin{aligned} & \text { start log, } \\ & \text { brl2/hægv } \end{aligned}$
	8	18:49:00	6.3	63/63	358	1484.6	66451742	new line
	8	19:13:00	6.3	63/63	286	1483.9	66451730	stop line at stöð OB41
		18:48:00			281		66451730	$\begin{aligned} & \text { Station: } \\ & \text { CTD299 } \\ & \hline \end{aligned}$
	1	20:06:00	6.3	63/63	286	1485.2	66451730	$\begin{aligned} & \text { new survey } \\ & \text { A200413_E2 } \end{aligned}$
	2	21:07:00	8.2	65/65	263	1486.6	66531729	new line, br12/hægv
	3	22:07:00	8	65/65	293	1484	67001733	new line
	4	23:07:00	7.9	65/65	431	1484.6	67011753	new line
	4	23:14:00	7.9	65/65	433	1484.6	67011756	$\begin{aligned} & \text { Station: } \\ & \text { CTD300 } \end{aligned}$
	5	23:53:00	7.9	65/65	428	1484.5	67011754	start log, svd300, br12/br12
08/09/04	6	00:53:00	8.2	65/65	448	1484.5	66591808	583 nm at midnight
	7	01:53:00	8.5	65/65	215	1485.1	66581827	
	8	02:53:00	9.3	65/65	415	1484.7	66591809	br12/SV3
	9	03:53:00	9.8	65/65	354	1484.2	66591744	
	10	04:52:00	8.6	65/65	289	1485.2	66591731	
	11	05:52:00	9	65/65	291	1485	66501730	-hægv
	12	06:52:00	8.2	65/65	305	1485	66421734	
	13	07:40:00	2.2	65/65	388	1487.9	66361740	stop line at OB40
		08:52:00		65/65	425		66361739	$\begin{aligned} & \text { smábútur á } \\ & \text { A200413_E2 } \end{aligned}$
	14	08:54:00	11.1	65/65	424	1487.9	66361739	$\begin{aligned} & \text { A200413_T2 } \\ & \text { af stað, } \\ & \text { brl/brl2 } \end{aligned}$
		09:53:00		65/65			66311711	

$\left.\begin{array}{l|c|c|c|c|c|c|l|l} & & 10: 25: 00 & 0.4 & 65 / 65 & 236 & 1490.7 & 663017 & 00 \\ \text { stop at OB41 } \\ \hline & & 10: 51: 00 & 11.7 & 65 / 65 & 240 & & 662917 & \text { start log, } \\ \text { svp 299 }\end{array}\right]$

	11	03:52:00	7.2	65/65	430	1483.4	67231858	
	12	04:52:00	6.7	65/65	461	1484.3	67161858	
	13	05:52:00	6	65/65	439		67091858	SV5/SV8
	14	06:52:00	8.4	65/65	465	1483.9	67061856	
	15	08:00:00	8.4	65/65	454	1484.3	67161855	enginn gluggi á enda línu
	16	09:02:00	10.9	63/63	428	1483.1	67261856	", V5/V9
	17	09:53:00	8.7	63/63	446	1483.7	67271854	
	18	11:01:00	19.5	63/63	475	1484.3	67161853	
	19	11:52:00	10.5	63/63			67081853	new line. SSV4/SSV9
	20	12:52:00	11.7	64/64	480	1484.5	67151851	new line
	21	13:52:00		64/64			67261852	new line
	21	14:19:00	11.7	64/64	454	1484.2	67301849	snúið á enda línu
	22	14:52:00	11.7	64/64	466	1484	67251849	new line. SV3/SV4
	23	15:52:00	10.9	64/64	460	1485.2	67141848	new line
	23	16:31:00	10.9	64/64	332	1484.7	67071849	snúið á enda línu
	24	16:52:00	11.4	68/68	336	1484.4	67101847	new line
	25	17:52:00	11	65/65	472	1484.7	67211848	new line, SV2/SV4
	25	18:45:00	8	64/64	456	1484.4	67301847	snúið á enda línu
	26	18:52:00		64/64			67311845	new line
	27	19:52:00		64/64			67201844	new line
	27	20:44:00	7.3	64/64	333	1485.1	67141837	fyllt í göt á enda línu, SSV2/SSV3
	28	21:52:00		64/64			67201842	new line
	29	22:52:00		64/64			67301842	new line
	29	22:59:00		64/64	454	1484	67301842	Station: CTD\#303
	30	23:39:00		64/64	464	1484.1	67301841	brl2/brl2
10/09/04	1	00:39:00		64/64			67221840	new line, $976,7 \mathrm{~nm}$ at midnight
	33	01:03:00	5	65/65	237	1484.8	67201840	Line number changed
	34	02:03:00	10.4	65/65	436	1484.5	67291838	óreglulegt landslag, breytileg geislabr.
	35	03:03:00	11.1	66/65	248	1484.4	67221837	", SV3/SV6

$\left.\begin{array}{l|c|c|c|c|c|c|l|l} & 36 & 04: 03: 00 & 10.5 & 68 / 65 & 258 & 1484.5 & 67201837 & \text { la } \\ \hline & & & & & & & & \begin{array}{l}\text { new line í } \\ \text { snúningi á } \\ \text { enda }\end{array} \\ & 37 & 05: 03: 00 & 10.6 & 65 / 65 & 341 & 1484.5 & 67311833 \\ \text { mæælilínu }\end{array}\right]$

	1	08:05:00	11.9	65/65	279	1483.3	66481816	new survey A200413_T4 , transit to Lágey
	2	09:04:00	11.8	65/65	222	1488.9	66381754	A2/A8
	3	10:04:00	11.2	65/65	352	1488.4	66301734	
	4	11:04:00	11.6	67/67	149	1488.9	66221715	
	5	11:42:00	0.3	67/67	80	1490.2	66181706	A2/A7
	6	13:58:00	10.8	63/63	195	1489.9	66161658	Disk space problems
	6	14:07:00	10.8	63/63	199	1489.9	66161652	$\begin{aligned} & \text { Station: } \\ & \text { CTD\#307 } \end{aligned}$
	1	14:33:00	9.7	63/63	196	1489.8	66151653	start log, new survey $\begin{aligned} & \text { A200413_A1 } \\ & \operatorname{svp} 307 \end{aligned}$
	2	15:32:00	11.4	67/67	166	1489.5	66221702	A2/A5
	3	16:32:00	9.7	67/67	235	1489.2	66321708	
	4	17:32:00	7.2	66/67	187	1489.2	66321710	
	5	18:32:00	7.5	68/68	143	1489.1	66321714	A3/A8
	6	19:32:00	6.6	65/65	154	1489	66321711	
	7	20:32:00	8.5	65/65	179	1489.6	66271704	
	8	21:32:00	9.9	65/65	181	1489.3	66181701	A3/A10
	9	22:32:00	7.6	60/60	146	1488.9	66201700	
	10	23:32:00	7.6	60/60	168	1488.7	66201700	$\begin{aligned} & \text { ANA4/ANA } \\ & 14 \end{aligned}$
12/09/04		00:20:00	10.7	60/60	165	1489.9	66151702	Axarfjördur survey aborted due to weather
								$\begin{aligned} & 1407,3 \mathrm{~nm} \\ & \text { (midnight) } \end{aligned}$
	11	00:20:00	10.7	60/60	165	1489.9	66151702	$\begin{aligned} & \text { Survey } \\ & \text { A200413_T4 } \end{aligned}$
	12	01:19:00	11	62/62	200	1490.3	66121726	Transit to Eyjafjörður
	13	02:19:00	12.1	62/62	65	1490.3	66121752	
	14	03:12:00			148	1490.3	66141814	svp 299
	15	04:10:00	8.8	62/62	56	1489.5	66071822	NA5/NA14
	15	04:34:00	9.2	64/64	56	1488.6	66041820	Ping mode in manual and shallow
	16	05:10:00	9.6	74/61	74	1488.8	65591815	
	17	06:10:00	8.9	69/66	56	1488.8	66041820	N3/NA5
	18	07:10:00	8.2	68/67	105	1489.6	66011818	

	19	08:10:00	8.9	71/64	108	1489.1	66001818	line statistics file not found
	20	09:10:00	8.4	67/67	124	1489.7	66051822	A3/A12
	21	10:11:00	4.7	67/67	99	1489	65571814	
	22	11:11:00	10.5	67/67	123	1489.6	66051822	
	23	12:11:00		65/65		1490	65581817	A2/A3
	24	13:11:00					66031823	
	25	14:11:00					66001821	
	25	14:33:00	11.7	65/66			65561814	Transit to Akureyri
	26	15:11:00						
	26	16:05:00					65411804	Docked at Akureyri
	27	19:45:00		65/65				Restart from Akureyri
	28	20:58:00					65501806	new line
	29	21:00:00		68/66		1489.7	65501806	Surveying geothermal spire, in southern fjord NA32/NA3
	29	21:10:00		68/68		1489.6	65491808	
		21:13:00			81		65491808	Station: CTD\#308
	30	21:43:00		68/68	87	1489.6	65491808	start line, $\operatorname{svp} 308$
	30	22:59:00		68/68	97	1488.5	65541817	stop line, CTD309
	31	23:17:00	0.9	68/68	95	1488.6	65541814	start line, svp 309
13/09/04	32	00:17:00	12.3	70/65	61	1489.2	66001827	$\begin{aligned} & \text { NA32/NA3, } \\ & 1587 \mathrm{~nm} \text { at } \\ & \text { midnight } \end{aligned}$
	32	01:05:00	-	67/67	180	1488.9	66081829	stop line, Station: CTD\#310
	33	01:28:00	-	67/67	178	1488.7	66081829	start line, $\operatorname{svp} 310$
	34	02:30:00	10.3	67/67	137	1489.2	66091828	NA3/NA6
	35	03:27:00	10	67/67	105	1489.8	66131808	
	36	04:27:00	11.2	65/65	169	1489	66131745	
	37	04:55:00	11.2	67/68	298	1488.9	66131733	while trying to change svp mouse froze

$\left.\begin{array}{l|l|l|l|l|l|l|l|l} & & & & & & & \begin{array}{l}\text { connection } \\ \text { problems? } \\ \text { line 38 lost }\end{array} \\ \hline & & & & & & & & \\ \text { Resumed } \\ \text { Axarfjördur } \\ \text { survey } \\ \text { NA4/NA6 }\end{array}\right]$

	12	08:06:00	9.8	67/67	393	1478.7	67061820	
	13	09:06:00	10.2	67/67	565	1479.5	67141816	NA3/NNA5
	14	10:06:00	11.1	64/64	440	1478.4	67111816	
	15	11:05:00	6.1	66/66	379	1480.1	67011818	
	16	11:20:00	6.3	66/66	145	1480.2	67011821	stop logging,
								Dredging at Stóragrunn, plowbag lost
	16	11:55:00	11.8	66/66	152	1481.3	67011822	$\begin{aligned} & \text { Logging } \\ & \text { resumed, } \\ & \text { br12/brl2 } \end{aligned}$
	17	12:55:00	11.2	67/67	239	1486.9	66491823	
	19	13:55:00	11.5	67/67	246	1488.9	66411811	
	19	14:55:00	11.6	67/68	146	1488	66321753	brl3/A2
	20	15:55:00	11.7	66/68	133	1488.9	66221746	
	21	16:55:00	11.3	68/68	95	1487.9	66241749	
	22	17:55:00	11.1	68/67	101	1487.8	66261750	N2/N3
	23	18:55:00	10	68/68	196	1489.2	66171741	
	24	19:27:00	10.1	68/68	218	1488	66171729	$\operatorname{svp} 310$
	25	20:27:00	11.4	68/68	185	1486.6	66231718	
	26	21:27:00	11	68/68	194	1487.4	66331723	N2/N3
	27	22:27:00	10.2	68/68	217	1488	66331720	
	28	23:27:00	10.2	68/68	236	1487.6	66321658	2061,5 nm at midnight
15/09/04	29	00:27:00	11.3	68/68	225	1486.5	66221654	br12/brl2
	30	01:27:00	9	67/67	160	1486.2	66111655	No sound speed probe values for a few mins
	31	02:30:00	11	67/67	226	1486.7	66221653	
	32	03:31:00	8.7	67/67	239	1487.4	66331658	No window at beg. of line brl 3/NA3
	33	04:19:00	11.7	67/67	232	1486.7	66251653	svd 307
	34	05:19:00	11	67/67	183	1485.9	66141651	Sound probe complaints near end of line
	35	06:19:00					66191650	
	36	07:19:00	10.7	67/67	245	1487.4	66301653	
	37	08:18:00	10.4	67/67	236	1486	66261651	
	38	09:18:00	10.7	67/67	221	1486.4	66211648	
	39	10:19:00	10.2	67/67	243	1487	66311650	

	40	11:19:00	10	67/67	221	1487.1	66271648	
	41	12:19:00	10.9	67/67	221	1487.2	66251647	
	42	13:19:00	11.5	67/67	158	1487.3	66311647	
	43	14:19:00	11.5	67/67	209	1487.8	66231644	
	44	15:18:00	11.1	68/67	190	1486.8	66331646	Heading west towards last survey area
	45	16:19:00					66331715	
	46	17:19:00					66291719	
	47	18:19:00	8	66/67	170	1488.4	66181719	
	50	21:21:00	9.8	67/67	199	1487.6	66291722	
	51	22:19:00	8.8	67/67	204	1487.5	66291723	
16/09/04	53	00:19:00	10	67/66	249	1487.2	66331726	
	54	01:19:00	10.9	67/70	225	1487.5	66301727	
	56	03:37:00	11.3	68/69	229	1488.4	66181737	
	57	04:37:00	11.7	67/67	43	1487.9	66121750	
	58	04:19:00	11.8	67/67	123	1488.7	66131811	new line, no window popup
		04:24:00						$\begin{aligned} & \text { stop logging } \\ & \text { A200413_E5 } \end{aligned}$
	1	04:26:00	12	67/67	168	1488.8	66131814	new survey A200413_T3 $\operatorname{svp} 310$ by Hedins- fjördur
	2	06:30:00	11.4	75/67	87	1489.3	66111839	
	3	07:26:00	11.5	65/65	119	1488.6	66141903	
	4	08:26:00	11.2	63/63	210	1489.5	66161929	

Table A2: Multibeam logbook including stops for CTD and OBses.
Abbreviations used: svp: changed to sound velocity profile
CTD: Conductivity, Temperature and Depth
measurement to probe sound speed

CTD positions/times

CTD No	Latitude \boldsymbol{N}	Longitude \boldsymbol{W}	Deployment time
298	$66^{\circ} 13.07$	$17^{\circ} 40.85$	$21: 46: 01,06 / 09$
299	$66^{\circ} 45.17$	$17^{\circ} 30.08$	$19: 48: 38,07 / 09$
300	$67^{\circ} 01.17$	$17^{\circ} 55.65$	$23: 22: 47,07 / 09$
301	$66^{\circ} 53.67$	$19^{\circ} 14.53$	$20: 59: 50,08 / 09$
302	$67^{\circ} 30.24$	$18^{\circ} 59.67$	$02: 19: 41,09 / 09$
303	$67^{\circ} 30.08$	$18^{\circ} 41.82$	$23: 07: 27,09 / 09$
304	$67^{\circ} 01.90$	$18^{\circ} 24.82$	$21: 20: 47,10 / 09$
307	$66^{\circ} 15.84$	$16^{\circ} 51.46$	$14: 13: 50,11 / 09$
308	$65^{\circ} 49.35$	$18^{\circ} 07.76$	$21: 17: 12,12 / 09$
309	$65^{\circ} 53.93$	$18^{\circ} 13.64$	$23: 05: 06,12 / 09$
310	$66^{\circ} 07.68$	$18^{\circ} 29.50$	$01: 12: 35,13 / 09$

Table A3: Map of CTD positions and deployment times and dates.

Figure A3: Map of CTD positions north of Iceland which will be used for calibrating the multibeam recordings.

Sound speed in water profiles in (\mathbf{m} / \mathbf{s}) from Conductivity-Temperature-Depth measurements

Eyjafjörður

8. Acknowledgements

We thank Captain Gudmundur Bjarnason and his crew for professional support throughout the cruise. We would also like to thank the „Leitstelle für mittelgrosse Forschungschiffe" for supporting our cruise, special thanks for J. Meincke and H. Furch for handling all things necessary. And, of course, we are really grateful to the Deutsche Forschungsgemeinschaft who supports this project under grants Da 478/131 and Ri1220/2-1.
Finally, a thanks to all the people without whom the cruise would have been impossible: our secretaries Christel and Stoefi for support during customs and administration issues, the workshop people at the University of Hamburg for building parts of the instruments, G. Gudmundsson from Vedurstofa Islands for supplying the SIL data, J. Makris from GeoPro for lending the instruments, the central administration for legal support, R. Stefansson, K. Tryggvason and A. Tryggvason for good cooperation during this initial phase of the common NICE (NorthIce-TJOSTE) project.

9. References

Botz R, Winckler G, Bayer R, Schmitt M, Schmidt M, Garbe-Schönberg D, Stoffers P, Kristjansson L (1999) Origin of trace gases in submarine hydrothermal vents of the Kolbeinsey Ridge, Earth Planet. Sci. Lett. 171:83-93
Riedel C, Schmidt M, Botz R, Theilen F (2001) The Grimsey hydrothermal field offshore North Iceland: crustal structure, faulting and related gas venting, Earth Planet. Sci. Lett. 193:409-421
Riedel C, Petersen T, Theilen F, Neben S (2003) High b-values in the leaky segment of the Tjörnes Fracture Zone north of Iceland: are they evidence for shallow magmatic heat sources ?, J. Volcanol. Geotherm. Res.
Riedel C, Tryggvason A, Dahm T, Stefanson, R, Bödvarson, R, Gudmundsson GB (submitted to Journal of Seismology) The seismic velocity structure north of Iceland
Rögnvaldsson ST, Gudmundsson A, Slunga R (1998) Seismotectonic analysis of the Tjörnes Fracture Zone, an active transform fault in north Iceland, J. Geophys. Res. 103:30117-30129
Saemundsson K (1974) Evolution of the Axial Rifting Zone in Northern Iceland and the Tjörnes Fracture Zone, Geol. Soc. Am. Bull. 85:495-504
Sykes LR (1967) Mechanism of earthquakes and nature of faulting on the mid-ocean ridges, J. Geophys. Res. 72:2132-2153
Thorodssen, T (1925) Die Geschichte der isländischen Vulkane, D. Kgl. Dankse Vidensk. Skrifter, Naturvidensk. Og mathem. Afd., 8. Raekke, IX, Köbenhavn
Thorarinsson S (1937) Das Dalvik-Beben in Nordisland, Geografiska Annaler, 19:232-277

